A Self-consistent Model for Cleavage in the Presence of Plastic Flow

نویسنده

  • G. E. BELTZ
چکیده

-A theory is proposed for cleavage in the presence of plastic flow, in circumstances which do not involve strong viscoplastic retardation of dislocation motion. We build upon recent notions that recognize the large disparity between relevant length scales involved in plastic flow processes around cracks in metals and on metal-ceramic interfaces. The lengths consist of (1) the Burgers vector, (2) the nominal dislocation spacing, (3) the elastic "cell" dimension, and (4) the overall plastic zone size. Of particular interest is the phenomenon of "brittle" crack growth in the presence of pre-existing, apparently mobile, dislocations, which has been observed in several material systems. A continuum elastic-plastic finite element model is utilized that assumes the presence of a dislocation-free strip of elastic material of height D surrounding a crack tip, from which dislocations are assumed not to emit. The parameter D is self-consistently chosen by identifying a maximum equivalent Mises stress in the plastic zone with that predicted by a phenomenological strength law of the type first used by Taylor and Orowan, in which strength varies inversely with nominal dislocation spacing or with cell size, either of which is identified as D in different interpretations of the model. For steady-state crack growth to occur, it is found that the applied energy release rate G must generally be several orders of magnitude larger than the ideal work necessary to separate the interface, at least when D is taken as dislocation spacing. Furthermore, this "shielding" ratio is found to be strongly sensitive to the ideal work of fracture itself, as well as other material properties. Copyright ~ 1996 Acta Metallurgica Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sub Loading Surface Multilaminate Model for Elastic-Plastic Porous Media

A framework for development of constitutive models based on semi-micromechanical aspects of plasticity is proposed. The resulting of this model for material employed friction type failure criterion, sub-loading surface, and associated flow rule. This model is capable of predicting effects of the rotation of principal stress/strain axes and consequent plastic flow, induced anisotropy of strength...

متن کامل

Spectroscopic evidence of Cu(II) and Zn(II) complexes having amino acid based Schiff base: A special emphasis on in vitro antimicrobial, DNA binding and cleavage studies

A new Schiff base ligand (L) obtained by the condensation reaction of N-acetylaceto-otoluidineand 2-aminopropanoic acid (an amino acid), is used to synthesize four mononuclearcomplexes of [MLCl] and [ML2] types (where M = Cu(II) and Zn(II); L = Schiff base) bykeeping the metal and ligand ratio as 1:1 and 1:2 respectively. This ligand and its complexeshave been characterized on the basis of diff...

متن کامل

A simple and efficient plasticity-fracture constitutive model for confined concrete

A plasticity-fracture constitutive model is presented for prediction of the behavior of confined plain concrete. A three-parameter yield surface is used to define the elastic limit. Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear plastic potential forms a non-associated flow rule. The use of non-associated flow rule improves the prediction of the dil...

متن کامل

FE-Based Analysis of Hot Forming Process Using the Flow Stress Prediction Model

In hot forming process, the workpiece undergoes plastic deformation at high temperature and the microstructure of the workpiece changes according to the plastic deformation. These changes affect the mechanical properties of workpiece. In order to optimize this process, both the plastic deformation of workpiece and its microstructural changes should be taken into consideration. Since material be...

متن کامل

FE-Based Analysis of Hot Forming Process Using the Flow Stress Prediction Model

In hot forming process, the workpiece undergoes plastic deformation at high temperature and the microstructure of the workpiece changes according to the plastic deformation. These changes affect the mechanical properties of workpiece. In order to optimize this process, both the plastic deformation of workpiece and its microstructural changes should be taken into consideration. Since material be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996